

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Zhang, Zhiyong]
On: 11 October 2008
Access details: Access Details: [subscription number 903562060]
Publisher Psychology Press
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Structural Equation Modeling: A Multidisciplinary Journal
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t775653699

A SAS Interface for Bayesian Analysis With WinBUGS
Zhiyong Zhang a; John J. McArdle b; Lijuan Wang a; Fumiaki Hamagami c

a University of Notre Dame, b University of Southern California, c University of Virginia,

Online Publication Date: 01 October 2008

To cite this Article Zhang, Zhiyong, McArdle, John J., Wang, Lijuan and Hamagami, Fumiaki(2008)'A SAS Interface for Bayesian
Analysis With WinBUGS',Structural Equation Modeling: A Multidisciplinary Journal,15:4,705 — 728

To link to this Article: DOI: 10.1080/10705510802339106

URL: http://dx.doi.org/10.1080/10705510802339106

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t775653699
http://dx.doi.org/10.1080/10705510802339106
http://www.informaworld.com/terms-and-conditions-of-access.pdf

Structural Equation Modeling, 15:705–728, 2008

Copyright © Taylor & Francis Group, LLC

ISSN: 1070-5511 print/1532-8007 online

DOI: 10.1080/10705510802339106

TEACHER’S CORNER

A SAS Interface for Bayesian Analysis
With WinBUGS

Zhiyong Zhang
University of Notre Dame

John J. McArdle
University of Southern California

Lijuan Wang
University of Notre Dame

Fumiaki Hamagami
University of Virginia

Bayesian methods are becoming very popular despite some practical difficulties

in implementation. To assist in the practical application of Bayesian methods, we

show how to implement Bayesian analysis with WinBUGS as part of a standard

set of SAS routines. This implementation procedure is first illustrated by fitting a

multiple regression model and then a linear growth curve model. A third example

is also provided to demonstrate how to iteratively run WinBUGS inside SAS for

Monte Carlo simulation studies. The SAS codes used in this study are easily

extended to accommodate many other models with only slight modification. This

interface can be of practical benefit in many aspects of Bayesian methods because

it allows the SAS users to benefit from the implementation of Bayesian estimation

and it also allows the WinBUGS user to benefit from the data processing routines

available in SAS.

Correspondence should be addressed to Zhiyong Zhang, Department of Psychology, University

of Notre Dame, Notre Dame, IN 46556. E-mail: zzhang4@nd.edu

705

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

706 ZHANG ET AL.

Bayesian methods have received more and more attention in social and be-

havioral researches (e.g., Edwards, Lindaman, & Savage, 1963; M. D. Lee,

2004; Myung & Pitt, 1997; Seltzer & Choi, 2003) and these models have been

successfully applied to item response models (e.g., Chang, 1996; Fox & Glas,

2001), factor analytic models (e.g., Bartholomew, 1981; S. Lee, 1981), structural

equation models (e.g., Congdon, 2003; Scheines, Hoijtink, & Boomsma, 1999),

genetic models (e.g., Eaves & Erkanli, 2003), growth curve models (e.g., Zhang,

Hamagami, Wang, Grimm, & Nesselroade, 2007), and multilevel models (e.g.,

Seltzer, Wong, & Bryk, 1996). In a recent debate by Trafimow (2003, 2005)

and M. D. Lee and Wagenmakers (2005), the advantages and disadvantages

of Bayesian methods were discussed and a promising future of Bayesian ap-

plications has been suggested. Based on the review of applications of Bayesian

methods in social and behavioral research, Rupp, Dey, and Zumbo (2004) further

concluded that both applied and theoretical communities could not afford to miss

the opportunities opened up by Bayesian methods.

A drawback to the implementation of Bayesian analysis and estimation is

the programming and computation demands. However, with the development

of the computation capacity, the cost of computation is acceptable given its

benefits. Furthermore, the emergence of the free available WinBUGS software

(Spiegelhalter, Thomas, Best, & Lunn, 2003) has made programming much

easier than before. WinBUGS is accepted as the most widely used and convenient

tool for estimating both simple and complex Bayesian models (Congdon, 2001,

2003; Cowles, 2004).

A complete WinBUGS program consists of three parts: (a) model specifi-

cation, (b) data input, and (c) starting values. Users first need to learn how

to specify a model in WinBUGS syntax and these specifications vary across

different models. In this article, we illustrate how to specify three models: a

multiple regression model, a growth curve model, and a confirmatory factor

model. Because the contributed WinBUGS example programs for many models

are available freely on the WinBUGS development Web site, we focus on helping

readers understand WinBUGS codes and customize the codes for their own

empirical data analysis.

The data format in the data input and starting values parts of WinBUGS is

very similar to Splus/R data format (Spiegelhalter et al., 2003). Researchers who

are not familiar with the Splus/R data format may find it difficult to transform

data to be compatible with WinBUGS. Fortunately, there are some free programs

or macros that can transform different formats of data to WinBUGS format, such

as an R function R2WinBUGS by Sturtz and Ligges, a set of SAS macros by

Sparapani, an Excel macro xl2bugs by Misra, and a standalone program BAUW

by Zhang and Wang (see Appendix for Internet links).

Although WinBUGS can be used as menu-driving software, we present a

batch procedure to call and run WinBUGS inside a SAS script. This pro-

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

A SAS INTERFACE FOR WINBUGS 707

cedure has several advantages over other methods. First, it is easy for re-

searchers who are already familiar with SAS to run WinBUGS. Second, it

permits a researcher to use SAS procedures before and after Bayesian mod-

eling. It is easy to describe and transform data first in SAS, run the Win-

BUGS program for Bayesian estimation, and then save and plot results using

SAS procedures. Third, although WinBUGS provides a “menu” to run the

program, the batch processing approach used here decreases the probability

of mistakes and allows users to easily repeat similar analyses. This procedure

is especially useful and convenient for analysis requiring repetition, such as in

Monte Carlo simulation studies. This procedure is demonstrated in the following

sections.

A COMPLETE PROCEDURE

TO RUN WINBUGS INSIDE SAS

To run WinBUGS inside SAS, the procedure portrayed in Figure 1 can be

followed. In the next sections, we describe this procedure using three examples:

a multiple regression model, a linear growth curve model, and a confirmatory

FIGURE 1 The flow chart to run WinBUGS inside SAS.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

708 ZHANG ET AL.

factor analysis (CFA) model. The first example aims to demonstrate how to

apply the whole procedure in Figure 1, including how to specify a model, trans-

form data, create starting values, and run WinBUGS inside SAS to implement

Bayesian analysis. The second example is based on the linear growth curve

model (e.g., McArdle & Nesselroade, 2003; Meredith & Tisak, 1990) and aims

to illustrate how to specify a more complex model. The third example aims

to show how to iteratively run WinBUGS inside SAS for the Monte Carlo

simulation study.

Example 1: The Multiple Regression Model

For the purpose of demonstration, we use a multiple regression model with two

predictors. The model can be written as

yŒi � D b0 C b1 � x1Œi � C b2 � x2Œi � C eŒi �; i D 1; : : : ; N:

In its probability form, this model can be expressed as

yŒi �jx1Œi �; x2Œi � � N.�Œi �; ¢2

e
/

�Œi � D b0 C b1 � x1Œi � C b2 � x2Œi �; (1)

where ¢2

e
is the residual or measurement error variance, b0 is the intercept, and

b1 and b2 are regression coefficients. A data set with the sample size N D

1,000 was generated from this model with the population parameter values set

as b0 D 1, b1 D 2, b2 D 3, and ¢2

e
D 4. The SAS codes for data generation

are given in Code 1. The complete codes for running WinBUGS inside SAS to

fit this multiple regression model are provided in Code 2 through Code 8.

Step 1: Install SAS and WinBUGS. The first step is to install SAS and

WinBUGS. Because SAS is widely used, we assume that SAS has been installed

and only focus on the installation of WinBUGS. WinBUGS is free software and

can be downloaded from its Web site (see Appendix). The download is an

executable file and it can be set up as a typical Windows program (double-click

and follow screen instructions). WinBUGS requires a key for its unrestricted

use. The key is sent by e-mail once the user completes a registration form on

the WinBUGS Web site.

Step 2: Set up SAS environment for WinBUGS. A set of free SAS

macros written by Sparapani (see Appendix) can be used to transform data from

SAS data format to WinBUGS data format. The macros can be downloaded

from their Web site (see Appendix A). A slightly modified version was used

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

A SAS INTERFACE FOR WINBUGS 709

DATA Sim_Reg;

b0=1; b1=2; b2=3; sig_e=2; seed=20060118; N = 1000;

DO _N_ = 1 TO N;

x1=RANNOR(seed);

x2=RANNOR(seed);

e=RANNOR(seed);

y = b0+b1*x1+b2*x2+sig_e*e;

KEEP y x1 x2;

OUTPUT;

END;

RUN;

CODE 1 Data generation.

DATA model;

INPUT model $80.;

CARDS;/*start the model*/

model{

#Model specification

for (i in 1:N) {

y[i]~dnorm(muy[i], Inv_sig2_e)

muy[i]<-b0+b1*x1[i]+b2*x2[i]

}

#priors

b0~dnorm(0, 1.0E-6)

b1~dnorm(0, 1.0E-6)

b2~dnorm(0, 1.0E-6)

Inv_sig2_e~dgamma(1.0E-3, 1.0E-3)

#parameter transformation

Sig2_e<-1/Inv_sig2_e

}

;

RUN;

DATA _NULL_;

SET model;

FILE "C:\SASWinBUGS\RegModel.txt";

PUT model;

RUN;

CODE 2 Model specification.

%_lexport(data=Sim_Reg, file=‘C:\SASWinBUGS\RegData.txt,’

var=y x1 x2);

CODE 3 Data transformation.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

710 ZHANG ET AL.

DATA _NULL_;

FILE "C:\SASWinBUGS\RegInit.txt";

PUT "list(b0=0, b1=0, b2=0, Inv_sig2_e=1)";

RUN;

CODE 4 Starting values specification.

DATA _NULL_;

FILE "C:\program files\WinBUGS14\RegBatch.txt";

PUT // @@

#1 "display(‘log’)"

#2 "check(‘C:/SASWinBUGS/RegModel.txt’)"

#3 "data(‘C:/SASWinBUGS/RegData.txt’)"

#4 "compile(1)"

#5 "inits(1, ‘C:/SASWinBUGS/RegInit.txt’)"

#6 "gen.inits()"

#7 "update(2000)"

#8 "set(b0)"

#9 "set(b1)"

#10 "set(b2)"

#11 "set(Sig2_e)"

#12 "dic.set()"

#13 "update(5000)"

#14 "dic.stats()"

#15 "coda(*,‘C:/SASWinBUGS/output’)"

#16 "save(‘C:/SASWinBUGS/bugslog.txt’)"

#17 "quit()"

;

RUN;

CODE 5 Batch scripts to run WinBUGS.

DATA _NULL_;

FILE "C:\SASWinBUGS\runreg.bat";

PUT ‘CD C:\program files\WinBUGS14’;

PUT ‘WinBUGS14.exe /PAR RegBatch.txt’;

PUT ‘EXIT’;

RUN;

DATA _NULL_;

X "C:\SASWinBUGS\runreg.bat";

RUN; QUIT;

CODE 6 Run WinBUGS in SAS X window.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

A SAS INTERFACE FOR WINBUGS 711

DATA log;

INFILE "C:\SASWinBUGS\bugslog.txt" TRUNCOVER;

INPUT log $80.;

log=translate(log," ","09"x);

RUN;

PROC PRINT DATA=log;

RUN;

CODE 7 View log file and DIC and debug errors.

%coda2sas(out=coda, infile=‘C:\ SASWinBUGS\outputIndex.txt,’

chain=‘C:\SASWinBUGS\output1.txt,’ stats=1);

QUIT;

CODE 8 Statistical inference.

in this article, which is also freely available. The following instructions can be

followed to set up the macros.

1. Put the macros into a folder. To avoid unintentionally deleting these

macros, we suggest putting the macros into the folder C:nProgram

FilesnSASnbugs, where bugs is a new folder that needs to be created

first.

2. Modify the SAS configuration file, sasv8.cfg for SAS 8.x or sasv9.cfg for

SAS 9.x. Open the file in Notepad and add the following two lines at the

end and save it:

-insert sasautos ‘C:\Program Files\SAS\bugs’

-insert sasautos ‘!SASROOT\core\sasmacro’

Step 3: Express the model in WinBUGS language. To implement

Bayesian analysis in WinBUGS, we first need to express the models using

WinBUGS syntax. For a typical WinBUGS program, the model specification

part must include two subparts: the expression of the model and the choice

of prior distributions (Spiegelhalter et al., 2003). For the regression model, the

codes are given in Code 2.

All WinBUGS programs start with a keyword model and the whole model

specification part needs to be put within a pair of brackets { }. The first

section of the model specification part can be viewed as the direct translation

of the probability form of the model. For the regression model in Equation 2,

WinBUGS codes for the ith individual were

yŒi� � dnorm.muyŒi�; Inv_sig2_e/; and

muyŒi� <�b0 C b1 � x1Œi� C b2 � x2Œi�:

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

712 ZHANG ET AL.

The first line indicates that y[i] had .�/ a normal distribution (dnorm) with

two arguments: mean muy[i] and precision Inv_sig2_e. The precision in the

second arguments is the reciprocal of the variance .1=¢2

e
/. The mean was equal

to (<-) the combination of the two predictors x1 and x2 with the regression

coefficients b1 and b2. Because we had N D 1,000 individuals, we used a for

(i in 1:N){ . . . } loop to repeat this specification for each individual. For

is the keyword for a loop. i in 1:N in the parentheses means replacing i using

1, 2, . . . , N and then implement everything in the brackets { } following

for (i in 1:N).

In the second section of the model specification part, we need to choose a

prior distribution for each parameter in the model. For this regression model,

there were four parameters, b0, b1, b2, and Inv_sig2_e. For the regression

intercept and regression coefficients, the normal distribution priors with mean

0 and precision 1.0E-6 were specified as bk�dnorm(0, 1.0E-6) with k =

0,1,2, which is a widely used noninformative prior (Congdon, 2001, 2003). For

the precision parameter, a Gamma distribution (dgamma) prior with shape and

scale parameter D 1.0E-3 was used Inv_sig2_e�dgamma(1.0E-3, 1.0E-3),

which is also a widely used noninformative prior for the variance parame-

ter (Congdon, 2001, 2003). Finally, we transformed the precision back to the

variance.

Running the codes in Code 2 saved the WinBUGS model specification codes

for the multiple regression model into a file called RegModel.txt.

Step 4: Configure a SAS program to run WinBUGS. In this step, we

configured a SAS program to create WinBUGS compatible data, construct a

staring value file, run WinBUGS, and analyze the Morkov chain Monte Carlo

(MCMC) data generated by WinBUGS. The following five steps can be per-

formed in SAS.

Step 4–1: Create a WinBUGS data file. By using the SAS macros in Step

2, a SAS data set can be converted to the WinBUGS format. WinBUGS uses a

keyword list(. . .) to organize the data. The data in the parentheses can be

a scalar, a vector, or an array. For a scalar, the format is ScalarName=data. For

example, N=1000 and T=5. For a vector, the format is VectorName=c(data1,

data2, . . . , dataN). The keyword c combines the values separated by the

comma in the parentheses into a vector. For example, Mu=c(0,0) is a vector

with two elements. For an array, the format is ArrayName=structure(.Data

= c(data1, data2, . . .), .Dim = c(nrow, ncol, . . .)). WinBUGS

reads data in .Data = c(data1, data2, . . .) into an array by filling the

right-most index for dimensions in .Dim = c(nrow, ncol, . . .) first. For

example, for a two-dimension (3 � 2) array,

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

A SAS INTERFACE FOR WINBUGS 713

y D structure.:Data D c.1; 2; 3; 4; 5; 6/;

:Dim D c.3; 2// D

0

@

1 2

3 4

5 6

1

A :

The SAS macros set up in Step 2 can convert SAS data into a list with

vector (_lexport) or array (_sexport). Using the codes in Code 3, a

SAS data set was converted to WinBUGS vector data and saved into a file. In

this example, the macro _lexport was used. data= defines the SAS data set

to be used. Here it was a SAS data set called Sim_Reg. file= defines the

file to save the data in WinBUGS data format. var= defines the variables to

transform. In the generated data file, three vectors, y, x1, and x2, along with a

scalar representing the sample size (N=1000) were saved.

Step 4–2: Create a starting value file. For each parameter in the model, a

starting value needs to be either specified manually or generated by WinBUGS.

Usually, for each canonical parameter, we give it a starting value manually and

let WinBUGS generate the others. The format of the starting values has the

same format as the data. The same way to transform data can be used to create

starting values. Usually, the starting values are relatively easier to handle and

can be put together directly. The SAS codes in Code 4 created a starting value

file for the regression model. All the starting values were put together in a list

and saved in the file RegInit.txt.

Step 4–3: Create a script file to run WinBUGS. In this step, we used the

batch mode to run WinBUGS. Code 5 provides the SAS codes for the regression

model.

Line 1 opened a log window to trace the history and errors of the implemen-

tation process. Line 2 checked whether the syntax in the file RegModel.txt was

correct. Line 3 read in the data, Line 4 compiled the model, Line 5 initialized

the parameters using the data in the starting value file, and Line 6 generated the

starting values for the parameters that were not specified in the starting value

file. Line 7 generated 2,000 data points for each parameter but these data points

(called burn-in data points) were discarded to ensure convergence. In Lines 8

through 11 the parameters were specified to be estimated. The parameters need

to be specified because the sampled data points for unspecified parameters will

not be saved. Line 12 was used to monitor the deviance information criterion

(DIC) (Spiegelhalter, Best, Carlin, & Linde, 2002) that can be used as a fit

statistic to compare models. Line 13 generated the other 5,000 data points that

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

714 ZHANG ET AL.

were saved to be analyzed in SAS for statistical inference. Line 14 wrote the

DIC into the log file. Line 15 saved the generated data points in Line 13 into

two files. The first file was the index file outputIndex.txt that included the index

for each estimated parameter defined in Lines 8 through 11. The second file was

the data file output1.txt that saved the data points generated. These files were

also called convergence diagnostic and output analysis (CODA) files. Line 16

saved the log file where the DIC and error information can be found. Line 17

was used to quit the WinBUGS program when finished.

Three comments are worth emphasizing here. First, this script file must be

saved where WinBUGS is installed, usually C:nprogram filesnWinBUGS14n.

Second, one can change the folder where the model file, data file, staring value

file, coda file, and log file are saved. However, the slash (/) instead of the usual

backslash (n) needs to be used in the path. Third, WinBUGS is sensitive to

lowercase and uppercase letters.

Step 4–4: Run WinBUGS and debug errors. To run WinBUGS, we first

created a run.bat file using the codes in the first paragraph of Code 6. We then

ran WinBUGS in the X window using the codes in the second paragraph. After

implementing the first two paragraphs of the codes, a DOS window opened and

the WinBUGS program implemented the procedure specified in Step 4–3. After

finishing, the WinBUGS program exited and the SAS window returned. The

first thing to check then is the log file. The codes in Code 7 can read the log

file and print its content in the output window of SAS. Any errors in running

WinBUGS can be targeted by the information provided in the log file.

Step 4–5: Read CODA files into SAS and implement statistical infer-

ences. The CODA file generated by WinBUGS can be read into SAS using

the macro coda2sas with the codes in Code 8. The first argument “out=”

specified the name of a SAS data set to save the generated data points. Here

a data set called “coda” was created. “infile=” specified the index file and

“chain=” specified the data file saved in Step 4–3. By specifying “stats=1,” the

macro coda2sas generated the history plot and the histogram with the overlaid

kernel density and calculated the descriptive statistics for each parameter. If

more analyses are needed, one can work on the data set “coda.” For the

regression model, the history and histogram plots for the regression model

are given in Figure 2. From the history plots, the generated sequences for

all parameters converged through the “eyeball” check. The density plots and

descriptive statistics for the four model parameters are given in Figure 2 and

Table 1, respectively. From Table 1, the estimated parameters were very close

to the population values used to generate the data.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

A SAS INTERFACE FOR WINBUGS 715

FIGURE 2 History plots and histogram plots of parameters from the regression model.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

716 ZHANG ET AL.

TABLE 1

The Parameter Estimates for the Regression Model

True Estimate SE CI

b0 1 0.99 0.064 0.87, 1.12

b1 2 2.04 0.065 1.92, 2.17

b2 3 3.01 0.064 2.89, 3.14

sig2_e 4 4.06 0.184 3.71, 4.45

Note. SE D standard error; CI D confidence interval.

Example 2: The Linear Growth Curve Model

We have shown how to use the procedure in Figure 1 to estimate a multiple

regression model. In this example, we present a linear growth curve model to

demonstrate how to specify a more complex model using WinBUGS syntax.

The linear growth curve model (e.g., McArdle & Nesselroade, 2003) can be

written as

yŒi; t � D LŒi� C t � SŒi � C eŒi; t �

LŒi � D �L C vLŒi �

SŒi � D �S C vS Œi �

i D 1; : : : ; N I t D 1; : : : ; T;

where yŒi; t � represents the observed score for the i th individual at occasion t ,

LŒi� represents the level and SŒi � represents the slope for the i th individual,

eŒi; t � represents the measurement error, �L and �S are the average level and

slope of N individuals, and vLŒi � and vS Œi � are the individual deviances for the

initial level and slope from the average level and slope for i th individual.

Using probability density function, this model can be expressed as

yŒi; t �jLŒi�; SŒi � � N.�Œi; t �; ¢2

e
/

�Œi; t � D LŒi� C t � SŒi � (2)

�

LŒi�

SŒi �

�

� MN

��

�L

�S

�

;

�

¢2

L
¢LS

¢LS ¢2

S

��

i D 1; : : : ; N I t D 1; : : : ; T;

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

A SAS INTERFACE FOR WINBUGS 717

where N represents the univariate normal distribution, ¢2

e
represents the variance

of measurement errors, MN represents the multivariate normal distribution, ¢2

L

and ¢2

s
represent the variances of the level and slope respectively, and ¢LS is

the covariance between the level and slope. Equation 2 indicates that the level

and slope have a bivariate normal distribution and the observed variable has a

univariate normal distribution with the mean expressed as the combination of

the level and slope.

Based on this linear growth curve model, we simulated a data set with

N D 1,000 participants, and T D 5 occasions using SAS with the population

parameter values �L D 10, �S D 5, ¢2

e
D 1, ¢2

S
D 4, ¢2

s
D 1, and ¢LS D 1

or ¡LS D :5. Because the maximum likelihood estimation (MLE) is commonly

applied to obtain parameter estimates for the linear growth curve model (e.g.,

Demidenko, 2004; Laird & Ware, 1982), we briefly compare the results from

Bayesian estimation (BE) with those from MLE.

For the linear growth curve model, the model specification part is given in

Code 9. Because the level and slope are bivariate normally distributed, we need to

specify a bivariate normal distribution for them, which is dmnorm in WinBUGS.

The bivariate normal distribution has two augments: mean vector and covariance

matrix. In WinBUGS, the second augment for dmnorm is the precision, which

is the inverse of the covariance matrix. In WinBUGS, this bivariate distribution

was expressed as

LSŒi; 1 W 2� � dmnorm.MuŒ1 W 2�;Inv_covŒ1 W 2; 1 W 2�/;

where LS[i,1:2] is a 2 � 1 vector with two elements LS[i,1] and LS[i,2];

LS[i,1] is the level and LS[i,2] is the slope for individual i ; Mu[1:2] is a

2 � 1 mean vector; and Inv_cov[1:2,1:2] is the inverse of the covariance

matrix of the initial level and slope. Because we had N D 1,000 individuals,

we used a for (i in 1:N){ . . . } loop to repeat this specification for each

individual. The observed variable y had a univariate normal distribution that was

expressed as

yŒi; t� � dnorm.MuYŒi; t�; Inv_sig2_e/:

Because each individual had an observation from occasion 1 to T D 5, we used

a second loop for (t in 1:T) nested in the first one to represent this.

For the linear growth model, there were six parameters, Mu[1,2],

Inv_cov[1:2,1:2], and Inv_sig2_e. We gave the mean vector

Mu[1,2] a bivariate normal distribution prior. For the precision matrix

(Inv_cov[1:2,1:2]), a Wishart distribution prior was used because it is the

multivariate generalization of the Gamma distribution. For the precision of y, a

Gamma distribution prior was used.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

718 ZHANG ET AL.

DATA model;

INPUT model $80.;

CARDS;/*Start of the model scripts*/

model

{#Model

for (i in 1:N){

LS[i,1:2]~dmnorm(Mu[1:2], Inv_cov[1:2,1:2])

for (t in 1:T){

y[i,t]~dnorm(MuY[i,t], Inv_sig2_e)

MuY[i,t]<-LS[i,1]+LS[i,2]*t

}

}

#Prior

Mu[1:2]~dmnorm(Mu0[1:2], Inv_cov0[1:2,1:2])

Mu0[1]<-0

Mu0[2]<-0

Inv_cov0[1,1]<-1.0E-6

Inv_cov0[2,2]<-1.0E-6

Inv_cov0[2,1]<-Inv_cov0[1,2]

Inv_cov0[1,2]<-0

Inv_cov[1:2,1:2]~dwish(R[1:2,1:2], 2)

R[1,1]<-1

R[2,2]<-1

R[2,1]<-R[1,2]

R[1,2]<-0

Inv_sig2_e~dgamma(.001,.001)

#Transform of the parameters

MuL<-Mu[1]

MuS<-Mu[2]

Cov[1:2,1:2]<-inverse(Inv_cov[1:2,1:2])

Sig2_L<-Cov[1,1]

Sig2_S<-Cov[2,2]

rho<-Cov[1,2]/sqrt(Cov[1,1]*Cov[2,2])

Sig2_e<-1/Inv_sig2_e

}

;

/*end of the model scripts*/

RUN;

DATA _NULL_;

SET model;

FILE ‘C:\SASWinBUGS\GrowthModel.txt’;

PUT model;

RUN;

CODE 9 Model specification of the linear growth model.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

A SAS INTERFACE FOR WINBUGS 719

%_sexport(data=Sim_LinGM,

file =‘C:\SASWinBUGS\GrowthData.txt,’

var =y1-y5);

DATA _NULL_;

FILE "C:\SASWinBUGS\InitValues.txt";

PUT "list(Mu=c(0,0), Inv_cov= structure(.Data =

c(1,0,0,1),.Dim=c(2,2)), Inv_sig2_e=1) ";

CODE 10 Data transformation and starting values for the linear growth curve model.

Running the codes in Code 9 saved the WinBUGS scripts for the growth

curve model into a file called GrowthModel.txt.

In this example, we used the N �T (1,000 � 5) array data y[i,t]. Using the

scripts in Code 10, the SAS data set Sim_LinGM was converted to WinBUGS

array data using macro _sexport and saved into a file called GrowthData.txt. All

the starting values were put together in a list and saved in the file InitValues.txt.

Note that this set of starting values included all three types of data.

The batch scripts and the .bat file for this linear growth curve model were

very similar to those for the regression model and we did not repeat them

here. The complete SAS codes for this model are available by request. After

running the complete SAS codes, all parameter estimates from WinBUGS along

with those from SAS MIXED are summarized in Table 2. From Table 2,

the parameter estimates from WinBUGS were very close to the population

values. Furthermore, the parameter estimates from WinBUGS and SAS MIXED

were nearly identical, which demonstrates that Bayesian method estimation

provides the same level of accuracy as MLE when noninformative priors are

used.

TABLE 2

Parameter Estimates for the Linear Growth Model

WinBUGS SAS MIXED

True

Value Estimate SE Estimate SE

�L 10 10.12 0.071 10.12 0.071

�S 5 5.01 0.033 5.01 0.034

¢2

L
4 3.96 0.227 3.96 0.226

¢2

S
1 1.04 0.051 1.04 0.051

¢2
e

1 0.97 0.025 0.97 0.025

¡LS 0.5 0.45 0.034 0.44 0.038

Note. SE D standard error.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

720 ZHANG ET AL.

Example 3: Monte Carlo Simulation of a Confirmatory

Factor Model

Bayesian methods have been mainly used as an alternative to MLE or to estimate

complex models that usually cannot be easily estimated with MLE. Simulation

studies are necessary when evaluating new or complex models. WinBUGS is not

very flexible for simulation studies because it can only run a single model or a

single data set at one time. However, SAS can be used to iteratively implement

the simulation procedure. To demonstrate how to use SAS to iteratively run

WinBUGS, we use a confirmatory factor model with one latent factor and four

observed variables. A path diagram with the population parameter values is

plotted in Figure 3. We generated 100 sets of data from the population models

and parameter estimates were obtained for each data set using WinBUGS. We

compared the mean of the parameter estimates from all 100 sets of data with

the population values.

For the simulation study, the model specification, starting values, and script

file to run WinBUGS are the same for each data set. The codes in Code 11

can be used to set up those for the confirmatory factor model. In this example,

FIGURE 3 Path diagram for the population confirmatory factor model.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

A SAS INTERFACE FOR WINBUGS 721

TITLE "Model specification for the CFA";

FILENAME model "C:\SASWinBUGS\cfamodel.txt";

DATA model;

INPUT model $80.;

CARDS;/*start the model*/

model{

for (i in 1:N){

for (t in 1:T){

y[i,t]~dnorm(muy[i,t],Inv_sig2[t])

muy[i,t]<-fload[t]*fscore[i]

}

fscore[i]~dnorm(0, 1)

}

for (t in 1:T){

fload[t]~dnorm(0, 1.0E-6)

Inv_sig2[t]~dgamma(0.001, .001)

Para[t]<-fload[t]

Para[t+4]<-1/Inv_sig2[t]

}

}

;

RUN;

DATA _NULL_;

SET model;

FILE model;

PUT model;

RUN;

TITLE "Starting values for CFA";

DATA _NULL_;

FILE "C:\SASWinBUGS\cfaini.txt";

PUT "list(fload=c(.5,.5,.5,.5), Inv_sig2=c(1,1,1,1))";

RUN;

TITLE "Batch scripts to run WinBUGS";

FILENAME runcfa ‘c:\program files\winbugs14\runcfa.txt’;

DATA _NULL_;

FILE runcfa;

PUT@1 "display(‘log’)";

PUT@1 "check(‘C:/SASWinBUGS/cfamodel.txt’)" ;

PUT@1 "data(‘C:/SASWinBUGS/cfadata.txt’)";

PUT@1 "compile(1)";

PUT@1 "inits(1, ‘C:/SASWinBUGS/cfaini.txt’)";

PUT@1 "gen.inits()";

PUT@1 "update(2000)";

PUT@1 "set(Para)";

PUT@1 "update(3000)";

PUT@1 "stats(*)";

PUT@1 "save(‘C:/SASWinBUGS/cfalog.txt’)";

CODE 11 Common scripts for the CFA simulation (continued on next page).

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

722 ZHANG ET AL.

PUT@1 "quit()";

RUN;

DATA _NULL_;

FILE "C:\SASWinBUGS\runcfa.bat";

PUT ‘"C:\program files\WinBUGS14\WinBUGS14.exe" /PAR

runcfa.txt’;

PUT ‘exit’;

RUN;

CODE 11 (Continued).

a new WinBUGS command “stat()” was used, which calculated the summary

statistics for each parameter inside WinBUGS.

For the Monte Carlo simulation study, each data set generated from the

population model was different and the parameter estimates from each data

set generally were likely to be somewhat different. Thus, we need to generate

multiple data sets and estimate the parameters for each data set iteratively. To do

this, we used a macro that can be called iteratively. Each time this macro was

called, it generated a data set and obtained parameter estimates from the model.

The macro simcfa(n) for the CFA is given in Code 12. In the first part, a data

set was generated from the population model. Then this data set was saved into

a file cfadata.txt in WinBUGS data format. In the next part, WinBUGS was run

in an X window to implement the Bayesian analysis based on this generated data

set. Finally, the log file was read into SAS to obtain the parameter estimates.

Notice that we did not save the CODA files and calculate the parameter estimates

in SAS. Instead, we read in the parameter estimates from the log file directly. In

this case, we need to make sure the generated sequences converged. In this ex-

ample, we first ran one set of data and found that the generated sequences for all

parameters converged after 100 iterations. Although we can use 100 as the burn-

in data points, we used 2,000 to ensure the convergence for all the other data sets.

To run the macro in Code 12 100 times to generate 100 data sets and obtain

100 sets of parameters, we configured another macro, runsimcfa, which is

given in Code 13.

After running the macro in Code 13, the 100 sets of parameter estimates

were printed in the SAS output window. Usually, for each parameter, we need to

calculate three numbers: the mean and the standard deviation of each parameter

estimate, and the mean of the associated standard errors (MSE) from the 100

sets of data. All of these can be calculated using the SAS codes in Code 14.

After running Code 11 through Code 14, we can obtain the results shown in

Table 3. The means of the parameter estimates are very close to the population

parameter values to generate the data. Furthermore, the standard deviations were

the same as the MSE, indicating the estimated standard errors were consistent

with the true standard errors.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

A SAS INTERFACE FOR WINBUGS 723

%MACRO simcfa(n);

TITLE ‘Generate the Data’;

DATA Sim_CFA;

*setting the true parameter values;

fload=.8; sig2=.36;

* setting statistical parameters;

N = 200; seed = 20060802+&n; M=4;

* need to setup arrays so we can have more variables;

ARRAY y_score{4} y1-y4;

ARRAY e_score{4} y1-y4;

* generating raw data;

DO _N_ = 1 TO N;

* now the indicator variables ;

f_score=RANNOR(seed);

DO t = 1 TO M;

y_score{t} = fload*f_score +sqrt(sig2)*RANNOR(seed);

END;

KEEP y1-y4;

OUTPUT;

END;

RUN;

/*Data*/

%_sexport(data=Sim_CFA, file=‘C:\SASWinBUGS\cfadata.txt,’

var=y1-y4);

/*Run WinBUGS*/

DATA _NULL_;

X "C:\SASWinBUGS\runcfa.bat";

RUN;

QUIT;

/*Read in the log file to view the parameters*/

TITLE ‘Simulation ‘&n;

DATA log;

INFILE "C:\SASWinBUGS\cfalog.txt" TRUNCOVER ;

INPUT log $80.;

log=translate(log," ","09"x);

IF (SUBSTR(log, 2, 4) ne ‘Para’) then delete;

RUN;

PROC PRINT DATA=log;

RUN;

%MEND;

CODE 12 The macro for data generation and model estimation.

DISCUSSION

WinBUGS is a powerful tool for implementing Bayesian analysis and estimating

complex models (Rupp et al., 2004) and SAS is widely used statistical software

in academic and research institutes. The combination of these tools will advance

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

724 ZHANG ET AL.

%MACRO runsimcfa;

%LET n=1;

%DO %WHILE(&n <= 100);

%simcfa(&n);

%LET n=%EVAL(&n+1);

%END;

%MEND runsimcfa;

*run the macro

%runsimcfa;

CODE 13 The macro for running simulation iteratively.

the application of both Bayesian methods and sophisticated models in social

and behavioral research. The whole procedure we presented and the SAS codes

we provided can conveniently interface SAS and WinBUGS. This procedure is

beneficial to many researchers, including advanced Bayesian users who already

have rich experiences in Bayesian analysis and researchers who are familiar with

SAS but have yet to discover the utility of Bayesian approach.

The procedure in Figure 1 was illustrated using a multiple regression model,

a linear growth curve model, and a confirmatory factor model. In the first

example, we demonstrated how to apply the proposed interface between SAS and

WinBUGS using a multiple regression model. The second example showed how

to specify a more complex model, and the last example focused on the iterative

use of WinBUGS for Monte Carlo simulation studies. All three examples can

be replicated and modified to accommodate new models.

TABLE 3

Results From the Confirmatory Factor Analysis

Parameters True M SD MSE

Factor loadings 0.8 0.81 0.06 0.06

0.8 0.82 0.06 0.06

0.8 0.80 0.06 0.06

0.8 0.81 0.06 0.06

Uniqueness variances 0.36 0.35 0.04 0.05

0.36 0.37 0.05 0.05

0.36 0.38 0.05 0.05

0.36 0.36 0.05 0.05

Note. M D the average value of the parameter estimates from

100 sets of simulated data; SD D standard deviation of the parameter

estimates from 100 sets of simulated data; MSE D average standard

errors of the parameter estimates from 100 sets of simulated data.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

A SAS INTERFACE FOR WINBUGS 725

/*Save the output and log into files*/

DM OUTPUT ‘FILE "C:\SASWinBUGS\allresults.txt"’;

DM LOG ‘FILE "C:\SASWinBUGS\allresults.log"’;

TITLE "Analyze the Monte Carlo simulation results";

DATA temp;

INFILE "C:\SASWinBUGS\allresults.txt" TRUNCOVER ;

INPUT all $90.;

IF (SUBSTR(all, 7, 4) NE ‘Para’) THEN DELETE;

FILE "C:\SASWinBUGS\temp.txt";

PUT all;

RUN;

DATA temp;

INFILE "C:\SASWinBUGS\temp.txt";

INPUT parid parname $ parest parsd MCerror p25 median p975 start sample;

id=int((_N_-.1)/8)+1;

parest=abs(parest);

RUN;

/*Parameter Estimates*/

PROC TRANSPOSE DATA=temp OUT=parest PREFIX=par;

BY id ;

ID parid;

VAR parest;

RUN;

/*Calculate the mean and s.d. of the parameters*/

PROC MEANS DATA=parest;

VAR par1-par8;

RUN;

/*SDs*/

PROC TRANSPOSE DATA=temp OUT=parsd PREFIX=sd;

BY id ;

ID parid;

VAR parsd;

RUN;

/*Calculate the mean of the s.e.*/

PROC MEANS DATA=parsd;

VAR sd1-sd8;

RUN;

CODE 14 Data process of the simulation results.

Two concerns about the Bayesian analysis include the computational time

and programming intensity required. However, with the availability of powerful

computing facilities, computing time is not an obstacle anymore. For exam-

ple, the multiple regression model took about 10 sec to finish the estimation

procedure on an outdated laptop (Celeron 1.7 MHz processor and 512 MB

of RAM). The growth curve model with N D 1,000 and T D 5 took about

120 sec. For the confirmatory factor model example, it took only 30 min to

finish the whole simulation study (with 100 sets of data). Furthermore, although

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

726 ZHANG ET AL.

the different models need different model specification, the example WinBUGS

codes for many models can be obtained freely. By simply replacing the model

specification part in our example and making a few other minor changes, a new

data set can be analyzed by a new model.

For the aim of illustration, we used three relatively simple models as ex-

amples. However, the same procedure allows and shows advantages when esti-

mating more complex models that cannot be analyzed in SAS easily, such as

the change point models (McArdle & Wang, 2008; Wang & McArdle, 2008),

dynamic item response models (Ram et al., 2005), and categorical dynamic

factor models (Zhang & Nesselroade, 2007). Complexity of models also made

the difference in computation time less noticeable between Bayesian and MLE

methods. However, the precision of the parameter estimates is even better for

Bayesian methods.

To close the discussion, we would like to evaluate the proposed procedure

based on our practical experience. First, this procedure is very useful for an-

alyzing data using a similar model. For example, analyzing the cognitive data

using the same linear growth curve model, we only need to import the data into

SAS and run the exact same procedure, changing only the name of the data

set. Second, this procedure is especially useful for simulation studies. It is well

known that WinBUGS is not flexible for simulation studies because it can run

only a single replication at one time. Our procedure can be viewed as a useful

supplement to WinBUGS. This procedure has been proved useful in Bowels

(2006), Zhang, Hamaker, and Nesselroade (2008). and Zhang and Nesselroade

(2007) for different simulation studies.

REFERENCES

Bartholomew, D. J. (1981). Posterior analysis of the factor model. British Journal of Mathematical

and Statistical Psychology, 34, 93–99.

Bowels, R. P. (2006). Item response models for intratask change to examine the impacts of proactive

interference on the aging of working memory span. Unpublished doctoral dissertation, Department

of Psychology, University of Virginia, Charlottesville, VA.

Congdon, P. (2001). Bayesian statistical modeling. New York: Wiley.

Congdon, P. (2003). Applied Bayesian modeling. New York: Wiley.

Chang, H.-H. (1996). The asymptotic posterior normality of the latent trait for polytomous IRT

models. Psychometrika, 61, 445–463.

Cowles, M. K. (2004). Review of WinBUGS 1.4. The American Statistician, 58, 330–336.

Demidenko, E. (2004). Mixed models: Theory and applications. New York: Wiley.

Eaves, L., & Erkanli, A. (2003). Markov chain Monte Carlo approaches to analysis of genetic and

environmental components of human developmental change and G X E interaction. Behavior

Genetics, 33, 279–299.

Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical inference for psychological

research. Psychological Review, 70, 193–242.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

A SAS INTERFACE FOR WINBUGS 727

Fox, J.-P., & Glas, C. A. W. (2001). Bayesian estimation of a multilevel IRT model using Gibbs

sampling. Psychometrika, 66, 271–288.

Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38,

963–974.

Lee, M. D. (2004). A Bayesian analysis of retention functions. Journal of Mathematical Psychology,

48, 310–321.

Lee, M. D., & Wagenmakers, E. (2005). Bayesian statistical inference in psychology: Comment on

Trafimow (2003). Psychological Review, 112, 662–668.

Lee, S. (1981). A Bayesian approach to confirmatory factor analysis. Psychometrika, 46, 153–160.

McArdle, J. J., & Nesselroade, J. R. (2003). Growth curve analysis in contemporary psychological

research. In J. Schinka & W. Velicer (Eds.), Comprehensive handbook of psychology: Research

methods in psychology (Vol. 2, pp. 447–480). New York: Wiley.

McArdle, J. J., & Wang, L. (2008). Modeling age-based turning points in longitudinal Life-span

growth curves of cognition. In P. Cohen (Ed.), Turning points research (pp. 105–128). Mahwah,

NJ: Lawrence Erlbaum Associates, Inc.

Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107–122.

Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor in modeling cognition: A Bayesian

approach. Psychonomic Bulletin & Review, 4(1), 79–95.

Ram, N., Chow, S., Bowles, R. P., Wang, L., Grimm, K., Fujita, F., et al. (2005). Examining

interindividual differences in cyclicity of pleasant and unpleasant affect using spectral analysis

and item response modeling. Psychometrika, 70, 773–790.

Rupp, A. A., Dey, D. K., & Zumbo, B. D. (2004). To Bayes or not to Bayes, from whether to

when: Applications of Bayesian methodology to modeling. Structural Equation Modeling, 11,

424–451.

Scheines, R., Hoijtink, H., & Boomsma, A. (1999). Bayesian estimation and testing of structural

equation models. Psychometrika, 64, 37–52.

Seltzer, M., & Choi, K. (2003). Sensitivity analysis for hierarchical models: Downweighting and

identifying extreme cases using the t distribution. In S. P. Reise & N. Duan (Eds.), Multilevel

modeling: Methodological advances, issues, and applications (pp. 25–52). Mahwah, NJ: Lawrence

Erlbaum Associates, Inc.

Seltzer, M. H., Wong, W. H., & Bryk, A. S. (1996). Bayesian analysis in applications of hierarchical

models: Issues and methods. Journal of Educational and Behavioral Statistics, 21, 131–167.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Linde, A. v. d. (2002). Bayesian measures of model

complexity and fit. Journal of the Royal Statistical Society: Series B, Statistical Methodology, 64,

583–639.

Spiegelhalter, D. J., Thomas, A., Best, N., & Lunn, D. (2003). WinBUGS manual version 1.4.

Cambridge, UK: MRC Biostatistics Unit, Institute of Public Health.

Trafimow, D. (2003). Hypothesis testing and theory evaluation at the boundaries: Surprising insights

from Bayes’s theorem. Psychological Review, 110, 526–535.

Trafimow, D. (2005). The ubiquitous Laplacian assumption: Reply to Lee and Wagenmakers (2005).

Psychological Review, 112, 669–674.

Wang, L., & McArdle, J. J. (2008). Estimating unknown change points by using Bayesian methods.

Structural Equation Modeling, 15, 52–74.

Zhang, Z., Hamagami, F., Wang, L., Grimm, K. J., & Nesselroade, J. R. (2007). Bayesian analysis of

longitudinal data using growth curve models. International Journal of Behavioral Development,

31, 374–383.

Zhang, Z., Hamaker, E. L., & Nesselroade, J. R. (2008). Comparisons of four methods for estimating

dynamic factor models. Structural Equation Modeling, 15(3), 377–402.

Zhang, Z., & Nesselroade, J. R. (2007). Bayesian estimation of categorical dynamic factor models.

Multivariate Behavioral Research, 42, 729–756.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

728 ZHANG ET AL.

APPENDIX

LIST OF PROGRAMS AND MACROS

1. SAS: http://www.sas.com

2. WinBUGS: http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml

3. R2WinBUGS by Sibylle Sturtz and Uwe Ligges: http://cran.r-project.org/

src/contrib/Descriptions/R2WinBUGS.html

4. SAS Macros by Rodney Sparapani: http://www.mcw.edu/pcor/bugs/

5. xl2bugs by Sanjog Misra: http://smisra.simon.rochester.edu/software.htm

6. BAUW by Zhiyong Zhang and Lijuan Wang: http://bauw.psychstat.org

7. Modified version of Rodney Sparapani’s SAS Macros: http://bauw.

psychstat.org

D
o
w
n
l
o
a
d
e
d

B
y
:

[
Z
h
a
n
g
,

Z
h
i
y
o
n
g
]

A
t
:

2
3
:
0
5

1
1

O
c
t
o
b
e
r

2
0
0
8

