
1

Posterior Distributions for the CDAFS models

For the CDAFS models,

yit = k ⇐⇒ τi,k−1 < zit ≤ τi,k, i = 1, . . . , mi, t = 1, . . . , T,

zt = Λft,

ft =
L∑

l=1

Blft−l + vt.

To simply the display of formulas, we only give the full conditional posterior distribution

of the lag 1 CDAFS model. For more complex models, the forms of the posteriors should

be the same.

Conditional distribution for zt

For the underlying variable zt, the conditional distribution is a truncated

multivariate normal distribution,

zt|yt,Λ, ft,Q, τ ∼ MN(Λft,Q)I(zt ∈ A),

where MN represents the multivariate normal distribution, and I(zt ∈ A) is an indicator

function which has the value 1 if zt ∈ A and 0 otherwise. Furthermore, A is a

p-dimensional cube formed by the thresholds in a p-dimensional space,

A = (τ1,y1−1, τ1,y1 ]×, . . . ,×(τp,yp−1, τp,yp ]

To sample from the posterior distribution, the method described by Geweke (1991) can be

used.
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Conditional distribution for ft

Let the prior distribution of f0 be

f0 ∼ MN(µ0,Σ0).

The posterior distribution of ft is

ft|fj 6=t, f0, ztΛ,B,Q,D ∼ MN(Σt · µt,Σt),

with

Σ−1
t = D−1 + ΛtQ−1Λ + BtD−1B

and

µt
t = f t

t−1BD−1 + zt
tQ

−1Λ + f t
t+1D

−1B.

Conditional distributions for Λ and Q

Let λi be the ith row in the factor loading matrix Λ and the variance of eit be qi ,

the ith diagonal element of Q.

Let the prior distribution of λt
i be

λt
i ∼ MN(λt

i0,Σi0).

Conditional on the other parameters and the observed data, the posterior distribution of

λt
i is

λt
i|ft, zt, qi ∼ MN(λt

i1,Σi1), (1)

with

λt
i1 = (Σ−1

i0 + q−1
i XtX)−1(Σ−1

i0 λt
i0 + q−1

i Xtzi)
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and

Σi1 = (Σ−1
i0 + q−1

i XtX)−1,

where X is a q × T matrix of factor scores and zi is a T× 1 vector with the observations

for the ith underlying variable.

Given the prior distribution of qi,

qi ∼ IG(
v0

2
,
δ0

2
),

the posterior of qi is

qi|λi, ft, zt ∼ IG(
v1

2
,
δ1

2
), (2)

with

v1 = v0 + T,

δ1 = δ0 +
T∑

t=1

(zit − λift)2,

where IG represents the inverse Γ distribution.

Conditional distributions for B and D

If we give B and D multivariate normal and Wishart prior distributions, we can

obtain their conjugate posterior distribution as in Zhang, Hamaker, and Nesselroade

(Under Review). In the current study, we assume that D is a correlation matrix for

identification purpose. We then give a uniform distribution U(-1,1) for each off-diagonal

element in D as suggested by Chib and Greenberg (1998). We derive the posterior

distribution accordingly.
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Let bi represent the ith row of B with i = 1, . . . , p. Given the prior distribution of

bi be

bi ∼ MN(bi.0,Σbi.0),

The posterior distribution is

bi|ft,D,yt ∼ MN(bi.1,Σbi.1),

where

bi.1 = Σbi.1(Σ−1
bi.0bi.0 +

T∑

t=1

[ft−1dift −
q∑

j 6=i

ft−1djibjft−1]),

and

Σbi.1 = (Σ−1
bi.0 +

T∑

t=1

ft−1diif ′t−1)
−1.

In the above formula, dij is the (i, j)th element in the matrix D and di = (di1, . . . , diq).

For the correlation matrix D, we give all the off-diagonal elements a uniform prior

distribution,

dij ∼ U(−1, 1), i = 1, . . . , q − 1, j = 2, . . . , q.

There is no closed form for the posterior distribution of dij . However, the

Metropolis-Hastings algorithm used in Chib and Greenberg (1998) can be employed to

sample the posterior distribution.

In the current study, we first calculated the thresholds by using the method in

Olsson (1979) and then fixed all the thresholds in the Bayesian step. However, we can also

obtain the posterior distribution of the thresholds and use the Metropolis-Hastings

method to sample the thresholds from the posterior distributions (e.g., Song & Lee, 2002).
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